Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

MA8151 MATHEMATICS - I

13 Marks Question Bank

Part-B

Unit-I

- 1. Guess the value of the limit (if it exists) for the function $\lim_{x\to o}\frac{e^{5x}-1}{x}$ by evaluating the function at the given numbers $x=\pm~0.5,\,\pm~0.1,\,\pm~0.01,\,\pm~0.001,\,\pm~0.0001$ (correct to six decimal places.
- 2. For the function $f(x) = 2 + 2x^2 x^4$, find the intervals of increase or decrease, local maximum and minimum values, the intervals of concavity and the inflection points.
- 3. (i) Find the values of a and b that make f continuous on $(-\infty, \infty)$.

$$f(x) = \begin{cases} \frac{x^3 - 8}{x - 2}, & \text{if } x < 2\\ ax^2 - bx + 3, & \text{if } 2x \le x \le 3\\ 2x - a + b, & \text{if } x \ge 3 \end{cases}$$

(ii) find the derivative of $f(x) = cos^{-1} \left(\frac{b + acosx}{a + bcosx}\right)$

(iii) find y' for cos(xy) = 1 + sin y

- 4. If $f(x) = \frac{1-x}{2+x}$ then, find the equation for f'(x) using the concept of derivatives.
- 5. Find the derivative of $f(x) = \tanh^{-1} \left[\tan \frac{x}{2} \right]$.
- 6. For the function $f(x) = 2x^3 + 3x^2 36x$.
 - (i) Find the intervals on which it is increasing and decreasing.
 - (ii) Find the local maximum and minimum values of f.
 - (iii) find the intervals of concavity and the inflection points.
- 7. For what value of the constant "c" is the function "f" continuous on $(-\infty, \infty)$, $f(x) = \begin{cases} cx^2 + 2x; x < 2 \\ x^3 cx, & x \ge 2 \end{cases}$
- 8. Find the local maximum and minimum values of $f(x) = \sqrt{x} \sqrt[4]{x}$ using both the first and second derivative tests.
- 9. Find y' if $x^4+y^4=16$

Notes Syllabus **Question Papers** Results and Many more...

www.Binils.com

Available @

10. Find the tangent line to the equation $x^3+y^3=6xy$ at the point (3,3) and at what point the tangent line horizontal in the first quadrant.

11. Find
$$\frac{dy}{dx}$$
 if $y = x^2 e^{2x}(x^2+1)^4$.

- 12. For what value of the constant b, is the function f continuous on $(-\infty, \infty)$ if f(x) = $\begin{cases} bx^2 + 2x, & \text{if } x < 2 \\ x^3 - bx, & \text{if } x \ge 2 \end{cases}$
- 13. If $f(x)=2x^3+3x^3-36x$, find the intervals on which it is increasing or decreasing, the local maximum and local minimum values of f(x).
- 14. Show that the function $f(x) = 1 \sqrt{1 x^2}$ is continuous in the interval [-1,1].
- 15. Calculate the absolute maximum and minimum of the function $f(x) = 3x^4-4x^3-12x^2+1$ in [-2,3].

Unit-II

1. If
$$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$
, find $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z}$

- 2. Find the maxima and minima of $f(x,y) = x^4 + y^4 2x^2 + 4xy 2y^2$
- 3. Find the Taylor's series expansion of function of $f(x) = \sqrt{1 + x + y^2}$ powers of (x, y)and y up to second degree terms. 4. Find the minimum distance from the point (1,2,0) to the cone $z^2 = x^2 + y^2$.
- 5. For the given function $z=\tan^{-1}\left(\frac{x}{y}\right)-(xy)$, verify whether the statement $\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial^2 z}{\partial x \partial y}$.
- 6. A thin closed rectangular box is to have one edge equal to twice the other and constant volume 72 m³. Find the least surface area of the box.
- 7. Obtain the Taylor's series expansion of e^x sin y in terms of powers of x and y upto third degree terms.
- 8. Find the maximum or minimum values of the function $f(x,y) = x^2 + y^2 + 6x + 12$.

9. If
$$u = (x^2+y^2+z^2)^{-1/2}$$
 then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}$

- 10. Find the dimensions of the rectangular box without a top of maximum capacity, whose surface area is 108 sq.cm.
- 11. Obtain the Taylor's series expansion of $x^3+y^3+xy^3$ in terms of power of (x-1) and (y-2) up to third degree terms.
- 12. Find the maximum or minimum value of $f(x,y) = 3x^2-y^2+x^3$.

13. If
$$u = f(2x-3y, 3y-4z, 4z-2x)$$
, then find $\frac{1}{2}\frac{\partial u}{\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z}$.

Notes Syllabus **Question Papers** Results and Many more...

www.Binils.com

Available @

- 14. Find the shortest and the longest distances from the point (1, 2, -1) to the sphere $x^2+y^2+z^2=24$.
- 15. Examine $f(x,y) = x^3 + 3xy^2 15x^2 15y^2 + 72x$ for extreme values.

Unit-III

- 1. Using integration by parts, evaluate $\int \frac{(\ln x)^2}{r^2} dx$
- 2. Evaluate $\int_{\frac{\sqrt{2}}{3}}^{\frac{2}{3}} \frac{dx}{x^5 \sqrt{9x^2 1}}.$
- 3. Establish a reduction formula for $I_n = \int \sin^n x \, dx$. Hence, find $\int_0^{\frac{n}{2}} \sin^n x \, dx$.
- 4. Evaluate $\int e^x \sin x \, dx$ by using integration by parts.
- 5. Evaluate $\int_0^x \sin^2 x \cos^4 x \ dx$.
- 6. Evaluate $\int_0^3 (X^3 6X) dx$ by using Riemann sum with n sub intervals.
- 7. Evaluate $\int \sqrt{a^2 x^2} dx$ by using substitution rule.
- 8. Evaluate ∫ tanx / secx+cosx dx.
 9. evaluate ∫ e^{ax} cos bx dx using integration by parts.
- 10. Evaluate $\int \frac{x}{\sqrt{x^2+x+1}} dx$.
- 11. Evaluate $\int_0^{\frac{\pi}{2}} \cos^5 x \, dx$.
- 12. Evaluate $\int_0^\infty e^{-ax} sinbx dx (a > 0)$ using integration by parts.
- 13. Evaluate $\int_0^{\frac{\pi}{2}} \frac{\sin x \cos x}{\cos^2 x + 3\cos x + 2} dx.$
- 14. Evaluate $\int \frac{2x+5}{\sqrt{x^2-2x+10}} dx$.
- 15. Evaluate $\int_0^{\frac{\pi}{2}} x \tan^2 x \, dx$.

Unit-IV

- 1. Evaluate $\iint xy(x+y)dxdy$ over the area between $y=x^2$ and y=x.
- 2. Express $\int_0^a \int_y^a \frac{x^2}{(x^2+x^2)^{\frac{3}{2}}} dxdy$ in polar coordinates and then evaluate it.
- 3. Find the area bounded by the parabolas $y^2 = 4 x$ and $y^2 = x$.
- 4. Evaluate $\iint (xy)dx dy$ over the positive quadrant of the circle $x^2+y^2=a^2$.

Notes
Syllabus
Question Papers
Results and Many more...

www.Binils.com

Available @

- 5. Change the order of integration for the given integral $\int_0^a \int_{\frac{x}{a}}^{\frac{x}{a}} (x^2 + y^2) dy \, dx$ and evaluate it.
- 6. Find the area bounded by $y^2 = 4x$ and $x^2 = 4y$ by using double integrals.
- 7. Evaluate $\int_0^{2a} \int_0^x \int_y^x (x \ y \ z) dz \ dy \ dx$.
- 8. Evaluate by changing to polar coordinates $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$.
- 9. Change the order of integration for the given integral $\int_0^a \int_0^{2\sqrt{ax}} (x^2) dy \, dx$ and evaluate it.
- 10. Evaluate $\iiint (xyz)dx dy dz$ over the first octant $x^2+y^2+z^2=a^2$.
- 11. Using double integral, find the area bounded by y = x and $y = x^2$.
- 12. Change the order of integration in $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$ and then evaluate it.
- 13. Evaluate by changing the polar coordinates $\int_0^\infty \int_y^\infty \frac{x^2}{\sqrt{x^2+y^2}} dy \ dx$
- 14. Evaluate $\iint xydxdy$ over the region in the positive quadrant bounded by $\frac{x}{a} + \frac{y}{b} = 1$.
- 15. Find the value of $\iiint xyz \, dz \, dy \, dx$ through the positive spherical octant for which $x^2+y^2+z^2 \le a^2$.

Unit-V

- 1. Solve (D²+4D+5) $y=e^x + x^3 + cos2x + 1$.
- 2. Solve $x^2 \frac{d^2y}{dx} x \frac{dy}{dx} + y = \left(\frac{\ln x}{x}\right)^2$
- 3. Solve $\frac{dx}{dt} \frac{dy}{dt} + 2y = \cos 2t$, $\frac{dx}{dt} 2x + \frac{dy}{dt} = \sin 2t$.
- 4. Solve $y'' 4y' + 4y = (x + 1)e^{2x}$ by the method of variation of parameters.
- 5. Solve the simultaneous differential equation $Dx + y = \sin 2t$ and $-X + Dy = \cos 2t$.
- 6. Solve $(x+2)^2 \frac{d^2y}{dx^2} (x+2) \frac{dy}{dx} + y = 3x + 4$.
- 7. Solve $\frac{d^2y}{dx^2}$ +y = cosec x by using the method of variation of parameters.
- 8. Solve (D^2+3D+2) y = $4e^{2x} + x$ by using the method of undetermined coefficients.
- 9. Solve $\frac{d^2y}{dx^2}$ +y = cot x by using method of variation of parameters.
- 10. Solve (D²-2D) $y = 5e^x \cos x$ by using method of undetermined coefficients.
- 11. Solve $[(x+1)^2D^2+(x+1) D+1] y = 4 \cos \log (x+1)$.
- 12. Solve by method of variation of parameters: $\frac{d^2y}{dx^2} + a^2y = \tan ax$.

Notes Syllabus Question Papers Results and Many more...

www.Binils.com

Available @

- 13. Solve (D^2+2D+1) y = $e^x \sin 2x$ by using the method of undetermined coefficients.
- 14. Solve $\frac{dx}{dt} + \frac{dy}{dt} + 3x = sint$, $\frac{dx}{dt} = y x = cost$.
- 15. Using method of undetermined coefficients solve (D^2 -D-2) $y = 4x^2$.

www.binils.com