Reg. No.:		T	1	3036

Question Paper Code: 50863

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017 Third/Fourth Semester

Mechanical Engineering

ME 6403 - ENGINEERING MATERIALS AND METALLURGY

(Common to Automobile Engineering/Manufacturing Engineering/Mechanical and Automation Engineering)
(Regulations 2013)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. Draw a typical isomorphous phase diagram.
- 2. Why carbon content in austenite is higher than ferrite?
- 3. What is difference between stress relief and recrystallization heat treatment process?
- 4. Which has higher critical cooling rate: eutectoid steel or hypereutectoid steel?
 Justify.
- 5. Which type of stainless steel is non magnetic?
- 6. What is the role of boron in steel alloying?
- 7. What are outstanding properties of PTFE?
- 8. List the typical applications of SiC.
- 9. What are the characteristic features of brittle fracture?
- 10. State hardness whether corresponds to ultimate tensile strength or yield strength? Justify?

50863	3	-2-		
		PART – I	3	(5×13=65 Marks
11. a)	i) Draw Iron-Iron carbide reactions.	phase diagram,	name the various	field, line and (10
	ii) Find the wt. fraction of f		ntite of eutectoid s	
b)	Compare the microstructu			
12. a)	Brief on hardening and te	mpering of stee	Latinate Commen	
	(OR)			
	Compare different types of	f case hardening	g process.	
13. a)	Brief on the influence of all γ stabilisers.	loying elements	in steel under clas	sification of α and
	(OR)			
b)	 i) What are the classificate any THREE alloy. 	ion of aluminiu	m alloys and state t	the applications of
	ii) Brief on the mechanism	of ageing treat	ment of Al-Cu allo	y. Imigraward (6
14. a)	i) Classify composite mate example of each.	rials based on th	ne type of reinforce	ment and state an
	ii) State the properties and Si_3N_4 , Al_2O_3 and $SIALO$			n the list: PSZ,
	(OR)			
b)	i) List properties and appl	lications of any	three type of ceram	nics. (7
	ii) Brief on properties and	applications of a	any two polymers f	rom the list.
	PP, PC, PEEK, ABS an	d PS.		to ploy one at surface (6
15. a)	i) Compare slip and twinn	ing.		(4
	ii) Draw a typical creep cur	rve and brief on	the mechanism.	What are outstand
	(OR)			
b)	i) Draw a typical tensile to regions that represent d			the different points/
	ii) Draw a typical S-N curv	re of fatigue test	ing and brief on th	e mechanism. (9

1 10000 0000 0000 0000 0000 0000	-3-		50863
	PART - C		(1×15=15 Marks)
16. a) i) Explain why certain allowrought?	ys are heat trea	table, some are	castable and other (8)
ii) Suggest an material of che drum of automobile. Justi	fy your choice, ba	on as orthopaedi ased on the prope	c implant (or) brake erties of materials
and method of production			(7)
(OR)		Sales Market	
 b) Compare and contrast Brin advantages and disadvanta 		Rockwell hardr	
auvantages and disauvanta	ages.		15
		The same of the	
A	The second second		1