Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

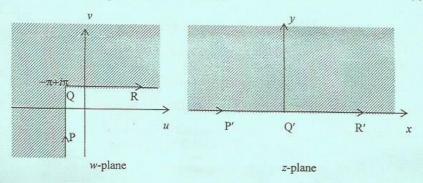
	Reg. No.:
	Question Paper Code: 40722
	M.E./M.Tech. DEGREE EXAMINATION, JANUARY 2019.
	First Semester
	Aeronautical Engineering
	MA 5151 – ADVANCED MATHEMATICAL METHODS
	(Common to M.E. Aerospace Technology/M.E. Soil Mechanics and Foundation Engineering/M.E. Structural Engineering)
	(Regulations 2017)
	Time: Three hours Maximum: 100 marks
	Answer ALL questions.
	PART A — $(10 \times 2 = 20 \text{ marks})$
	1. Find the Laplace transform of $f''(t)$.
4	2. Show that $\int_{0}^{t} J_0(u)J_0(t-u)du = \sin t.$
	3. If the Fourier transform of $f(x)$ is $F(\alpha)$, the find the Fourier transform of $f(x)\cos \alpha x$.
	4. State the Parseval's identity for Fourier transforms.
	5. State the fundamental lemma of Calculus of Variations.
	6. Find the tranversality condition for the functional of the form
	$v[y(x)] = \int_{x_0}^{x_1} A(x, y) \sqrt{1 + {y'}^2} dx$ with the right boundary moving along $y_1 = \varphi(x_1)$.
	7. Show that the transformation $z = F(w) + iG(w)$ maps the curve C in the z -plane given by $x = F(t)$, $y = G(t)$ onto the real axis of the w -plane.
	8. Find the stagnation points of the flow represented by the complex potential $\Omega(z)=z^2$.

Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

		te the Quotient law of tensors.	
		PART B — (5 × 16 = 80 marks)	
	11. (a)	(i) Find the Laplace transform of $erf(t^{3/2})$.	(8)
		(ii) Using complex inversion formula, find the in	verse laplace
		transform of $\frac{1}{(s+1)(s-2)^2}$.	(8)
		Or	
	(b)	Using Laplace Transform method, solve the following probl-	am ·
		$u_{tt} = u_{xx}, \ 0 < x < 1, \ t > 0$	
		u(0, t) = u(1, t) = 0, t > 0	
		$u(x, 0) = \sin \pi x, u_t(x, 0) = -\sin \pi x, 0 < x < 1.$	(16)
	12. (a)	Using Fourier Transform method, solve the following proble	em :
		$ku_{xx} = u_t, \ 0 \le x < \infty, \ t \ge 0$	
**		$u(x, 0) = 0, 0 < x < \infty$	
		$u(0, t) = u_0, t \ge 0$ and $u, u_x \to 0$ as $x \to \infty$.	(16)
2		Or	
	(b)	Using Fourier Transforms, solve the Laplace equation in $y > 0$ described by:	the half-plane
		$u_{xx} + u_{yy} = 0, -\infty < x < \infty, y > 0$ subject to $u(x, 0) = f(x)$ for -	$-\infty < x < \infty$;
		u is bounded as $y \to \infty$; u and $\frac{\partial u}{\partial x}$ both vanish as $ x \to \infty$.	(16)
	13. (a)	(i) Find the extremals of the	functional
		$v[y(x), z(x)] = \int_{x_0}^{x_1} (2yz - 2y^2 + y'^2 - z'^2) dx.$	(8)
		(ii) Find the curve connecting the points A and B which is a particle sliding from A to B in the shortest time.	s traversed by (8)
		Or	
		2	40722
			-

Download Anna Univ Questions, Syllabus, Notes @ www.AllAbtEngg.com

- (b) (i) Using Ritz's method, solve the boundary value problem y'' y + x = 0, $0 \le x \le 1$, y(0) = y(1) = 0. (8)
 - (ii) Find the plane curve of fixed perimeter and maximum area. (8)
- 14. (a) (i) Find a transformation which maps a polygon in the w-plane on to the unit circle in the z-plane. (8)



(ii) Find a function harmonic in the upper half of the z-plane, which takes the prescribed values on the x-axis given by $G(x) = \begin{cases} 1, & x > 0 \\ 0, & x < 0 \end{cases}$.

Or

- (b) Find the complex potential due to a source at z=-a and a sink at z=a of equal strengths k. Determine the equipotential lines and streamlines and represent graphically. Also find the speed of the fluid at any point.
- (a) Find the components of the metric tensor and the conjugate tensor in cylindrical coordinates. (16)

Or

(b) Prove that the covariant derivative of g^{ij} is zero.

(16)

(8)

3

40722