SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more... Available @

www.AllAbtEngg.com

	Reg. No.:	
Qı	uestion Paper Co	ode: 70753
MA5152 – APPL	First Semeste Applied Electron IED MATHEMATICS FOR	nics ELECTRONICS ENGINEERS ion Engineering/M.E. VLSI Design)
Time: Three Hours		Maximum: 100 Marks
	Statistical Tables may be Answer ALL ques	
	PART – A	(10×2=20 Marks)
1. Prove that $(a \lor b)$	$\vee \overline{b}$ is a tautology.	
2. Write down the tr	ruth values of the primitives	\Rightarrow , \Leftrightarrow for the 3-valued logic with
truth values $0, \frac{1}{2}$, 1.	
3. State Cholesky's	algorithm.	
4. Define least square	re solution.	
5. If X follows unifor	rm distribution in (-3, 3), find	P(X-1 < 2).
6. Given the random find the pdf of Y =	n variable X with density fund $4X^2$.	$f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$
7. Define dynamic p	rogramming problem.	
8. State Bellman's p	orinciple of optimality.	
		g (M/M/1): (∞/FIFO) system if the l are serviced at the rate of 30 per
t seconds is a Poi	essages to a communication of sson process with mean rate ssages will arrive during a 10	channel in an interval of duration $\lambda = 0.3$. Compute the probability second interval.

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes Syllabus Question Papers Results and Many more...

www.AllAbtEngg.com

Available @

70753	-2-	
	PART – B	(5×13=65 Marks)
 a) Explain each of the follow i) Unconditional and und ii) Unconditional and qual (OR) 	qualified propositions.	an example: (13)
b) Explain the two different	types of fuzzy quantifiers wi	ith examples. (13)
12. a) i) Find the canonical bas		
ii) Obtain the QR decomp	position of the matrix $A = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	$ \begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} $ (7)
b) Obtain the singular value13. a) i) Find the moment generation		
approximately normall If 3 students are select	by a number of students in ly distributed with mean 65 a ted at random from the group a would have scored above 75	nd standard deviation 5.
b) i) Derive the MGF of 0 variance.	Gamma distribution and he	(6)
		$\frac{x}{4}e^{-x/2}$ $x > 0$. Find 0 otherwise first four moments about (7)
14. a) Use dynamic programm constraints : $x_1 \le 4, x_2 \le$ (OR)	ing to solve Maximize $z = 3$ 6, $3x_2 + 2x_2 \le 18$ and x_1 , $x_2 \ge 3$	

www.AllAbtEngg.com

SSLC, HSE, DIPLOMA, B.E/B.TECH, M.E/M.TECH, MBA, MCA

Notes
Syllabus
Question Papers
Results and Many more...

www.AllAbtEngg.com

Available @

-3-

70753

b) A vessel is to be loaded with stocks of 3 items. Each unit of item i has a weight w_i and value r_i . The maximum cargo weight the vessel can take is 5 and the details of the three items are as follows:

i	w _i	r _i
1	1	30
2	3	80
3	2	65

Develop the recursive equation for the above case and find the most valuable cargo load without exceeding the maximum cargo weight by using dynamic programming.

15. a) A bank has two tellers working on savings accounts. The first teller handles withdrawals only. The second teller handles deposits only. It has been found that the service time distributions for both deposits and withdrawals are exponential with mean service time of 3 min per customer. Depositors are found to arrive in a Poisson fashion throughout the day with mean arrival rate of 16 per hour. Withdrawers also arrive in a Poisson fashion with mean arrival rate of 14 per hour. What would be the effect on the average waiting time for the customers if each teller could handle both withdrawals and deposits. (1

(OR)

- b) Patients arrive at a clinic according to Poisson distribution at a rate of 30 per hour. The waiting room does not accommodate more than 14 patients. Examination time per patient is exponential with mean rate of 20 per hour.
 - i) Find the effective arrival rate at the clinic.
 - ii) What is the probability that an arriving patient will not wait?
 - iii) What is the expected waiting time until a patient is discharged from the clinic? (13)

PART - C

(1×15=15 Marks)

16. a) The mileage that car owners get with a certain kind of radial tire is a random variable having an exponential distribution with mean 40,000 km. Find the probabilities that one of these tires will last (i) at least 20,000 km (ii) at most 20,000 km (iii) more than 30,000 km and (iv) less than 30,000 km. (15)

(OR

b) A group of engineers has 2 terminals available to aid in their calculations. The average computing job requires 20 minutes of terminal time and each engineer requires some computation about once every half an hour. Assume that these are distributed according to an exponential distribution. If there are 6 engineers in the group, find (a) the expected number of engineers waiting to use one of the terminals and in the computing centre and (b) the total time lost per day. (1)

www.AllAbtEngg.com

Available in /AllAbtEngg Android App too,

Check www.SmartPoet.Net & www.PhotoShip.Net