Reg. No. :		161104

Question Paper Code: 51104

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

First Semester
Civil Engineering
PH 6151 - ENGINEERING PHYSICS - I
(Common to all Branches)
(Regulations 2013)

Time: Three Hours Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. The lattice constant of a cubic crystal is 2.5 A°. Find the lattice spacing for the following planes in the lattice: (101) and (211).
- 2. What are Bravais lattices?
- List any four factors affecting the elasticity of a material.
- 4. Define Newton's Law of cooling.
- 5. Define Wien's displacement law. Give its limitation.
- 6. What are the properties of matter waves?
- 7. State Weber-Fechner Law.
- 8. List any four factors affecting acoustics of buildings.
- 9. Define numerical aperture.
- 10. Show that the stimulated emission is not possible for Sodium D line at 300° C.

51	10	4				
					PART – B	(5×16=80 Marks
11.		ii)	A crystal	with its advar has primitive	ion and working of Bridgma stages. s of 1 A°, 2 A° and 3 A°. A pla s. Find the intercepts of the	(12 ane (321) cuts an intercept
			axes.			(4
				(OR)	Berrinduration (factor)	
	b)	the			onal closed packed structu ting factor equals to that of	
12.	a)	rad	lius of cur	vature. Elab	the internal bending mome orate the internal bending r and circular cross section.	ent of a beam in terms of moment expression for (16
			and in	(OR)		(10
	b)				ne dimensional flow of heat on.	expression and solve it (16
13.	a)	Exp	plain Com oton, also	pton effect an briefly explai	d derive an expression for th n its experimental verificat	ne wavelength of scattered tion. (16
				(OR)		
	b)				Schrödinger wave equation	
14.	a)		Describe method.	in detail the p	production of ultrasonic way	ves by Magnetostriction (10
			Describe acoustic g		f determining the velocity o	f ultrasonic waves using (6
				(OR)		
					the reverberation time of ar rmine the absorption coeffic	
15.					cal fibers are characterized a s of propagation.	according to the material, (16
				(OR)		10. Show that the stimulate
	b)					ser with its advantages. (16