Reg. No. :	-8-3	ПТ		21	700

Question Paper Code: 50772

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2017

First Semester Civil Engineering

MA 6151-MATHEMATICS-I

(Common to Mechanical Engineering (Sandwich)/Aeronautical Engineering/ Agriculture Engineering/Automobile Engineering/Biomedical Engineering/ Computer Science and Engineering/Electrical and Electronics Engineering/ Electronics and Communication Engineering/Electronics and Instrumentation Engineering/Environmental Engineering/Geoinformatics Engineering/Industrial Engineering/Industrial Engineering and Management/Instrumentation and Control Engineering/Manufacturing Engineering/Materials Science and Engineering/Mechanical Engineering/Mechanical and Automation Engineering/ Mechatronics Engineering/Medical Electronics Engineering/Metallurgical Engineering/Petrochemical Engineering/Production Engineering/Robotics and Automation Engineering/Biotechnology/Chemical Engineering/Chemical and Electrochemical Engineering/Fashion Technology/Food Technology/Handloom & Textile Technology/Industrial Biotechnology/Information Technology/Leather Technology/Petrochemical Technology/Petroleum Engineering/Pharmaceutical Technology/Plastic Technology/Polymer Technology/Rubber and plastics Technology/Textile Chemistry/Textile Technology/Textile Technology (Fashion Technology)/Textile Technology)

(Regulations 2013)

Time: Three Hours

Maximum: 100 Marks

Answer ALL questions.

PART - A

(10×2=20 Marks)

- 1. Find the sum and product of the eigenvalues of a 3×3 matrix A whose characteristic equation is $\lambda^3-7\lambda^2+36=0$.
- 2. If $\lambda(\neq 0)$ is an eigenvalue of a square matrix A, then show that λ^{-1} is an eigenvalue of A^{-1} .

50772

-2-

- 3. Determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$, using integral test.
- 4. Show that an absolutely convergent series is convergent.
- 5. Define geometrically curvature of the curve and centre of curvature at a point.
- 6. Define the evolute and involute of the curves.
- 7. Find du/dt when $u = x^2 y$, $x = t^2$ and $y = e^t$.
- 8. If x = u(1 + v) and y = v(1 + u), find $\partial(x, y) / \partial(u, v)$.
- 9. Find the area bounded by the line y = x and parabola $x^2 = y$.
- 10. Evaluate the triple integral $\iiint_{12}^{332} x^2 yz dx dy dz$.

PART - B

(5×16=80 Marks)

11. a) i) Show that $A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$ satisfies its own characteristic equation and hence

find A -1

(8)

(8)

ii) The eigenvectors of a 3×3 real symmetric matrix A corresponding to eigenvalues 1, 3 and 3 are $(1 \ 0 \ -1)^T$, $(1 \ 0 \ 1)^T$ and $(0 \ 1 \ 0)^T$ respectively. Find the matrix A by an orthogonal transformation.

(OR)

- Reduce the quadratic form 6x²+3y²+3z²-4xy-2yz+4zx into the canonical form by an orthogonal transformation and find the index, signature and nature of the quadratic form.
- 12. a) i) Examine the character of the series $\frac{x}{1+x} \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} \frac{x^4}{1+x^4} + \dots + to_{\infty}$ where 0 < x < 1.
 - ii) Test for the convergence of the series $\sum_{n=1}^{\infty} \left(\sqrt{(n^2+1)} n \right)$, using comparison test.

(OR)

(8)

50772

	b) i) Find the interval of convergence of the series $x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots \text{to } \infty.$	8)
	ii) Test whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1}$ is conditionally convergent or absolutely	(8)
	Find the radius of the curvature at $(a, 0)$ on the curve $xy^2 = a^3 - x^3$.	(8) (8)
	(OR) Find the equation of the circle of curvature of the parabola $y^2 = 12x$ at the	10)
	ii) Find the envelope of the family of straight lines given by	(6)
	 i) Examine the function f (x, y) = x³ y² (12 - x - y) for extreme values. ii) Expand sin (x y) in powers of (x - 1) and (y - (π/2)) up to second degree terms by using Taylor's series. (OR) 	(8)
	b) i) If $z = f(x, y)$, where $x = e^u \cos v$ and $y = e^u \sin v$, then show that	
3	$x\frac{\partial z}{\partial v} + y\frac{\partial z}{\partial u} = e^{2u}\frac{\partial z}{\partial y}.$	(8)
	ii) The temperature T at any point (x, y, z) in a space is $T = 400 \text{ xyz}^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.	(8)
	15. a) i) Evaluate integral $\int_{0}^{1} \int_{y^2}^{2-x} xy dy dx$ by changing the order of integration.	(8)
	ii) Find, by using triple integrals, the volume of the tetrahedron bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $x + y + z = a$.	(8)
	(OR) (OR) (OR) (OR)	
	b) i) Evaluate $\iint r^3 dr d\theta$ over the area bounded between the circles $r=2\cos\theta$ and $r=4\cos\theta$.	(8)
	ii) Evaluate $\iiint_V \frac{1}{x^2 + y^2 + z^2} dx dy dz$, where V is the volume of the sphere $x^2 + y^2 + z^2 = a^2$ by changing to spherical polar coordinates.	(8)